SOI-based opto-mechanical Terahertz bolometer operating at room temperature with microsecond response time

2021 
We report the operation of a Terahertz (THz) detector exploiting the bi-material effect to resonantly excite a cantilever (CL) of micrometric size. The detector is fabricated on a SOI substrate and coupling to the incident THz radiation is obtained using two coupled aluminum half-dipole antennas. The induced CL deflection is readout optically with a 1.5 µ m laser. At 300K and 2.5THz, we obtain a peak responsivity of ~2 x 108pm/W for the fundamental bending mode. This yields a NEP of ~20nW/Hz1/2 at 2.5THz, i.e. of ~2nW/Hz1/2 at 3.8THz, corresponding to the antenna peak absorption. Finally, the low mechanical quality factor of the mode grants a broad frequency response of approximately 100kHz, i.e. a response time of ~10 μs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []