Synchronous spiking associated with high gamma oscillations in prefrontal cortex exerts top-down control over a 5Hz-rhythmic modulation of spiking in locus coeruleus

2020 
The brainstem noradrenergic locus coeruleus (LC) is reciprocally connected with the prefrontal cortex (PFC). Strong coupling between LC spiking and depolarizing phase of slow (1 - 2 Hz) waves in the PFC field potentials during sleep and anesthesia suggests that the LC drives cortical state transition. Reciprocal LC-PFC connectivity should also allow interactions in the opposing (top-down) direction, but prior work has only studied prefrontal control over LC activity using direct electrical (or optogenetic) stimulation paradigms. Here, we describe the physiological characteristics of naturally occurring top-down prefrontal-coerulear interactions. Specifically, we recorded LC multi-unit activity (MUA) simultaneously with PFC single unit and local field potential (LFP) activity in urethane-anesthetized rats. We observed cross-regional coupling between the phase of ~5 Hz oscillations in LC population spike rate and the power of PFC LFP oscillations within the high Gamma (hGamma) range (60 - 200 Hz). Specifically, transient increases in PFC hGamma power preceded peaks in the ~5 Hz LC-MUA oscillation. Analysis of cross-regional transfer entropy demonstrated that the PFC hGamma transients were predictive of a transient increase in LC-MUA. A ~29 msec delay between these signals was consistent with the conduction velocity from the PFC to the LC. Finally, we showed that PFC hGamma transients are associated with synchronized spiking of a subset (27%) of PFC single units. Our data suggest that, PFC hGamma transients may indicate the timing of the top-down excitatory input to LC, at least under conditions when LC neuronal population activity fluctuates rhythmically at ~5 Hz. Synchronized PFC neuronal spiking that occurs during hGamma transients may provide a previously unknown mode of top-down control over the LC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    1
    Citations
    NaN
    KQI
    []