Probing Quantum Gravity with Large Molecular Wave-packets

2019 
The most obvious obstacle behind a direct test of Quantum Gravity (QG) is its energy scale ($10^{19}$ GeV), which remains well outside of any human made machine. The next best possible approach is to provide indirect tests on effective theories of QG which can be performed in a lower energy scale. This paper is aimed in this direction, and shows a promising path to test the existence of the fundamental minimal length scale of Nature by measuring the dispersion of free, large molecular wave-packets. The existence of the minimal length is believed to be the reason for a modified commutation relationship between the position and momentum operators and, in this paper, we show that such a modification of the commutator has a profound effect on the dispersion rate of free wave-packets, and precise measurement on the broadening times of large molecular wave-packets (such as $C_{60}$, $C_{176}$ and large organic molecules) provide a promising path for an indirect test of quantum gravity, in a laboratory setting.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []