Injectable loop recorder implantation in an ambulatory setting by advanced practice providers: Analysis of outcomes

2017 
Introduction Implantable loop recorder (ILR) insertion has historically been performed in a surgical environment such as the electrophysiology (EP) lab. The newest generation loop recorder (Medtronic Reveal LINQ™, Minneapolis, MN, USA) is injectable with potential for implantation in a non-EP lab setting by advanced practice providers (APPs) facilitating improved workflow and resource utilization. We report the safety and efficacy of injectable ILR placement in the ambulatory care setting by APPs. Methods A retrospective review was performed including all patients referred for injectable ILR placement from March 2014 to November 2015. All device placement procedures were performed in an ambulatory care setting using the standard manufacturer deployment kit with sterile technique and local anesthetic following a single dose of intravenous antibiotics. Acute procedural success and complication rates following injectable ILR placement in the ambulatory setting were reviewed. Results During the study period, 125 injectable ILRs were implanted. Acute procedural success with adequate sensing (R-waves ≥ 0.2 mV) occurred in 100% of patients. There were no acute procedural complications. Subacute complications occurred in two patients (1.6% of implantations), including one possible infection treated with oral antibiotics and one device removal due to pain at the implant site. Conclusion In this retrospective single-center study, implantation of injectable ILR in an ambulatory care setting by APPs following a single dose of intravenous antibiotics and standard manufacturer technique yielded a low complication rate with high acute procedural success. Use of this implantation strategy may improve EP lab workflow while providing a safe and effective technique for device placement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    8
    Citations
    NaN
    KQI
    []