Quantifying the Security Cost of Migrating Protocols to Practice.

2020 
We give a framework for relating the concrete security of a “reference” protocol (say, one appearing in an academic paper) to that of some derived, “real” protocol (say, appearing in a cryptographic standard). It is based on the indifferentiability framework of Maurer, Renner, and Holenstein (MRH), whose application has been exclusively focused upon non-interactive cryptographic primitives, e.g., hash functions and Feistel networks. Our extension of MRH is supported by a clearly defined execution model and two composition lemmata, all formalized in a modern pseudocode language. Together, these allow for precise statements about game-based security properties of cryptographic objects (interactive or not) at various levels of abstraction. As a real-world application, we design and prove tight security bounds for a potential TLS 1.3 extension that integrates the SPAKE2 password-authenticated key-exchange into the handshake.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []