Digital Encoding of Cellular mRNAs Enabling Precise and Absolute Gene Expression Measurement by Single-Molecule Counting

2014 
We present a new approach for the sensitive detection and accurate quantitation of messenger ribonucleic acid (mRNA) gene transcripts in single cells. First, the entire population of mRNAs is encoded with molecular barcodes during reverse transcription. After amplification of the gene targets of interest, molecular barcodes are counted by sequencing or scored on a simple hybridization detector to reveal the number of molecules in the starting sample. Since absolute quantities are measured, calibration to standards is unnecessary, and many of the relative quantitation challenges such as polymerase chain reaction (PCR) bias are avoided. We apply the method to gene expression analysis of minute sample quantities and demonstrate precise measurements with sensitivity down to sub single-cell levels. The method is an easy, single-tube, end point assay utilizing standard thermal cyclers and PCR reagents. Accurate and precise measurements are obtained without any need for cycle-to-cycle intensity-based real-time m...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    27
    Citations
    NaN
    KQI
    []