Charge transport through biomolecular wires in a solvent: bridging molecular dynamics and model Hamiltonian approaches.

2009 
We present a hybrid method based on a combination of classical molecular dynamics simulations, quantum-chemical calculations, and a model Hamiltonian approach to describe charge transport through biomolecular wires with variable lengths in presence of a solvent. The core of our approach consists in a mapping of the biomolecular electronic structure, as obtained from density-functional based tight-binding calculations of molecular structures along molecular dynamics trajectories, onto a low-dimensional model Hamiltonian including the coupling to a dissipative bosonic environment. The latter encodes fluctuation effects arising from the solvent and from the molecular conformational dynamics. We apply this approach to the case of pG-pC and pA-pT DNA oligomers as paradigmatic cases and show that the DNA conformational fluctuations are essential in determining and supporting charge transport.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    73
    Citations
    NaN
    KQI
    []