Hearing rehabilitation after subtotal cochleoectomy using a new, perimodiolar malleable cochlear implant electrode array: a preliminary report.

2020 
PURPOSE We here report about the first surgical experience and audiological outcome using a new, perimodiolar malleable cochlear implant electrode array for hearing rehabilitation after subtotal cochleoectomy for intralabyrinthine schwannoma (ILS). METHOD Based on a cochlear implant with MRI compatibility of the magnet in the receiver coil up to 3 T, a cochlear implant electrode array was developed that is malleable and can be placed perimodiolar after tumor removal from the cochlea via subtotal cochleoectomy. Malleability was reached by incorporating a nitinol wire into the silicone of the electrode array lateral to the electrode contacts. The custom-made device was implanted in four patients with intracochlear, intravestibulocochlear or transmodiolar schwannomas. Outcome was assessed by evaluating the feasibility of the surgical procedure and by measuring sound field thresholds and word recognition scores. RESULTS After complete or partial tumor removal via subtotal cochleoectomy with or without labyrinthectomy, the new, perimodiolar malleable electrode array could successfully be implanted in all four patients. Six months after surgery, the averaged sound field thresholds to pulsed narrowband noise in the four patients were 36, 28, 41, and 35 dB HL, and the word recognitions scores for monosyllables at 65 dB SPL were 65, 80, 70, and 25% (one patient non-German speaking). CONCLUSION The surgical evaluation demonstrated the feasibility of cochlear implantation with the new, perimodiolar malleable electrode array after subtotal cochleoectomy. The audiological results were comparable to those achieved with another commercially available type of perimodiolar electrode array from a different manufacturer applied in patients with ILS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    4
    Citations
    NaN
    KQI
    []