Short-term high-fat diet exacerbates insulin resistance and glycolipid metabolism disorders in young obese men with hyperlipidemia, as determined by metabolomics analysis using ultra-HPLC-quadrupole time-of-flight mass spectrometry: High-fat diet and glycolipid metabolism

2019 
BACKGROUND: The prevalence of obesity is increasing rapidly worldwide, and dietary intake is strongly associated with obesity-related chronic diseases. However, key metabolic perturbations in obese young men with hyperlipidemia after high-fat diet (HFD) intervention are not yet clear, and remain to be determined. The aim of this study was to investigate the effects of a short-term HFD on glycolipid metabolism, insulin resistance (IR), and urinary metabolomic profiling in young obese men with hyperlipidemia. METHODS: Sixty young men (19-25 years; 30 normal weight, 30 obese with hyperlipidemia) were enrolled in the study. Differences in metabolomic profiling of urine between normal-weight and obese young men before and after 3 days intake of the HFD were investigated using ultra-HPLC-quadrupole time-of-flight mass spectrometry. RESULTS: After the HFD intervention, total cholesterol (TC), low-density lipoprotein cholesterol, fasting plasma glucose, insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) were significantly increased and high-density lipoprotein cholesterol was significantly decreased in obese men, but only TC was significantly increased in normal-weight subjects. Based on metabolic differences, normal-weight and obese men, and obese men before and after the HFD intervention could be separated into distinct clusters. Seventeen major metabolites were identified that were associated with type 2 diabetes mellitus, glycolipid metabolism and IR; the changes in these metabolites suggest metabolic changes in young obese males after short-term HFD intake. CONCLUSIONS: The findings of this study may contribute to increased understanding of the early biological adaptations of obesity with hyperlipidemia to HFD for the early prevention and control of diabetes and IR.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    7
    Citations
    NaN
    KQI
    []