Integration of G protein signals by extracellular signal-regulated protein kinases in SK-N-MC neuroepithelioma cells
2005
Mammalian cells often receive multiple extracellular stimuli under physiological conditions, and the various signaling inputs have to be integrated for the processing of complex biological responses. G protein-coupled receptors (GPCRs) are critical players in converting extracellular stimuli into intracellular signals. In this report, we examined the integration of different GPCR signals by mitogen-activated protein kinases (MAPKs) using the SK-N-MC human brain neuroepithelioma cells as a neuronal model. Stimulation of the Gi-coupled neuropeptide Y1 and Gq-coupled muscarinic M1 acetylcholine receptors, but not the Gs-coupled dopamine D1 receptor, led to the activation of extracellular signal-regulated kinase (ERK). All three receptors were also capable of stimulating c-Jun NH2-terminal kinases (JNK) and p38 MAPK. The Gi-mediated ERK activation was completely suppressed upon inhibition of Src tyrosine kinases by PP1, while the Gq-induced response was suppressed by both PP1 and the Ca2+ chelator, BAPTA-AM. In contrast, activations of JNK and p38 by Gs-, Gi-, and Gq-coupled receptors were sensitive to PP1 and BAPTA-AM pretreatments. Simultaneous stimulation of Gi- and Gq-coupled receptors resulted in the synergistic activation of ERK, but not JNK or p38 MAPK. The Gi/Gq-induced synergistic ERK activation was PTX-sensitive, and appeared to be a co-operative effect between Ca2+ and Src family tyrosine kinases. Enhanced ERK activation was associated with an increase in CREB phosphorylation, while the JNK and p38-responsive transcription factor ATF-2 was weakly enhanced upon Gi/Gq-induction. This report provides evidence that G protein signals can be integrated at the level of MAPK, resulting in differential effects on ERK, JNK and p38 MAPK in SK-N-MC cells.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
60
References
32
Citations
NaN
KQI