Multicolour spectral karyotyping of mouse chromosomes

1996 
Murine models of human carcinogenesis are exceedingly valuable tools to understand genetic mechanisms of neoplastic growth. The identification of recurrent chromosomal rearrangements by cytogenetic techniques serves as an initial screening test for tumour specific aberrations. In murine models of human carcinogenesis, however, karyotype analysis is technically demanding because mouse chromosomes are acrocentric and of similar size. Fluorescence in situ hybridization (FISH) with mouse chromosome specific painting probes1 can complement conventional banding analysis. Although sensitive and specific, FISH analyses are restricted to the visualization of only a few mouse chromosomes at a time. Here we apply a novel imaging technique2 that we developed recently for the visualization of human chromosomes3 to the simultaneous discernment of all mouse chromosomes. The approach is based on spectral imaging to measure chromosome-specific spectra after FISH with differentially labelled mouse chromosome painting probes. Utilizing a combination of Fourier spectroscopy, CCD-imaging and conventional optical microscopy, spectral imaging allows simultaneous measurement of the fluorescence emission spectrum at all sample points. A spectrum-based classification algorithm has been adapted to karyotype mouse chromosomes. We have applied spectral karyotyping (SKY) to chemically induced plasmocytomas, mammary gland tumours from transgenic mice overexpressing the c-myc onco-gene and thymomas from mice deficient for the ataxia telangiectasia (Atm) gene. Results from these analyses demonstrate the potential of SKY to identify complex chromosomal aberrations in mouse models of human carcinogenesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    287
    Citations
    NaN
    KQI
    []