Study of Catalysts for Catalytic Burners for Fuel Cell Power Plant Reformers

2003 
Catalytic burners for fuel cell power plant reformers are alternatives to conventional flame burners. Their application is expected to provide uniform temperatures in the reformer, efficient use of low-calorific gaseous by products and reduction of pollutant emissions. For testing in the burners, a series of spherical Pd/CeO2/Al2O3 catalysts were prepared. An optimum concentration of ceria providing the highest thermal stability of catalysts was determined. An effect of catalyst activation in the reaction mixture-1% methane in air was observed. A series of Mn containing oxide catalysts on spherical γ-Al2O3 or (γ+Χ)-Al2O3, both pure and doped with La, Ce and Mg oxides were prepared. The catalysts were characterized by chemical analysis, X-ray phase analysis, BET surface area and activity measurements in methane oxidation. A batch of Mn-Mg-La-Al-O catalyst was prepared for further long-term testing in a model reformer with a catalytic burner. A model reformer with a catalytic burner was designed and fabricated for testing in the composition of the bench-scale Fuel Cell Power Plant. Preliminary testing of this catalyst showed that it provided complete methane combustion at the specified operational temperatures over 900 °C.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    17
    Citations
    NaN
    KQI
    []