LAYER-BY-LAYER RESOLVED CORE-LEVEL SHIFTS IN CAF2 AND SRF2 ON SI(111) : THEORY AND EXPERIMENT

1994 
Using x-ray-photoelectron spectroscopy and Auger-electron spectroscopy, we have resolved surface, bulk, and interface Ca and F core-level emission in thin films (3--8 triple layers) of CaF[sub 2] and SrF[sub 2] on Si(111). We confirmed these assignments using x-ray-photoelectron diffraction (XPD) and surface modification. XPD was also used to identify the growth modes of the films as being either laminar or layer plus islands; in the latter case we have resolved buried and uncovered interface F and Ca/Sr emission. We compare the observed energy differences between surface, bulk, and interface emission to theoretical estimates of the extra-atomic contributions to emission energies. We find excellent agreement considering only the Madelung (electrostatic) potentials for the initial-state contribution and polarization response for the final-state contribution, including the effect of tetragonal strain. Small discrepancies for emission from metal atoms bonded to the Si substrate are interpreted in terms of chemical shifts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    18
    Citations
    NaN
    KQI
    []