Bending of the concentration discharge relationship can inform aboutin-stream nitrate removal

2021 
Abstract. Nitrate (NO3−) excess in rivers harms aquatic ecosystems and can induce detrimental algae growths in coastal areas. Riverine NO3− uptake is a crucial element of the catchment scale nitrogen balance and can be measured at small spatiotemporal scales while at the scale of entire river networks, uptake measurements are rarely available. Concurrent, low frequency NO3− concentration and stream flow (Q) observations at a basin outlet, however, are commonly monitored and can be analyzed in terms of concentration discharge (C-Q) relationships. Previous studies suggest that more positive log(C)-log(Q) slopes under low flow conditions (than under high flows) are linked to biological NO3− uptake, creating a bent rather than linear log(C)-log(Q) relationship. Here we explore if network scale NO3− uptake creates bent log(C)-log(Q) relationships and when in turn uptake can be quantified from observed low frequency C-Q data. To this end we apply a parsimonious mass balance based river network uptake model in 13 mesoscale German catchments (21–1450 km2) and explore the linkages between log(C)-log(Q) bending and different model-parameter combinations. The modelling results show that uptake and transport in the river network can create bent log(C)-log(Q) relationships at the basin outlet from log-log linear C-Q relationships describing the NO3− land to stream transfer. We find that the bending is mainly shaped by geomorphological parameters that control the channel reactive surface area rather than by the biological uptake velocity itself. Further we show that in this exploratory modelling environment, bending is positively correlated to percentage NO3− load removed in the network (Lr.perc) but that network wide flow velocities should be taken into account when interpreting log(C)-log(Q) bending. Classification trees, finally, can successfully predict classes of low (~ 4 %), intermediate (~ 32 %) and high (~ 68 %) Lr.perc using information on water velocity and log(C)-log(Q) bending. These results can help to identify stream networks that efficiently attenuate NO3− loads based on low frequency NO3− and Q observations and generally show the importance of the channel geomorphology on the emerging log(C)-log(Q) bending at network scales.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []