Self-assembly of biomolecules at surfaces characterized by NEXAFS

2007 
Surface science has made great strides towards tailoring surface properties via self-assembly of nanoscale molecular adsorbates. It is now possible to functionalize surfaces with complex biomolecules such as DNA and pro- teins. This brief overview shows how NEXAFS (near edge X-ray absorption fine structure spectroscopy) can be used to characterize the assembly of biological molecules at surfaces in atom- and orbital-specific fashion. To illustrate the range of applications, we begin with simple self-assembled monolayers (SAMs), proceed to SAMs with customized ter- minal groups, and finish with DNA oligonucleotides and Ribonuclease A, a small protein containing 124 amino acids. The N 1s absorption edge is particularly useful for characterizing DNA and proteins because it selectively interrogates the π* orbitals in nucleobases and the peptide bonds in proteins. Information about the orientation of molecular orbitals is obtained from the polarization dependence. Quantitative NEXAFS models explain the polarization dependence in terms of molecular orientation and structure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    14
    Citations
    NaN
    KQI
    []