Assessment of radiofrequency self‐heating around a metallic wire with MR T1‐based thermometry

2011 
Heat produced by a magnetic resonance (MR) imaging sequence in the vicinity of a conductive wire (pacemaker, electrodes, or catheter), is a subject of interest for the assessment of patient safety during imaging. For this purpose, the measurement of temperature rises during an MR imaging sequence using MR T1-based thermometry provides several advantages, mainly in its ability to retrieve in situ real-time thermal maps. Recent studies investigated the heat produced by an independent radiofrequency pulse, assessing MR imaging sequence heating using a specific MR thermometry sequence. This study focuses on self-heating for which the radiofrequency pulses used for measuring temperature create the heat. An experimental design was set up to evaluate T1-based thermometry self-heating using a coupled/decoupled wire and to compare it with a reference temperature gathered by an optical fiber device. For the tested experimental set up, T1-based thermometry is in fairly good agreement with optical fiber reference temperature. Magn Reson Med, 2011. © 2011 Wiley-Liss, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    18
    Citations
    NaN
    KQI
    []