Low-Cost Automatic Ambient Assisted Living System

2018 
The recent increase in ageing population in countries around the world has brought a lot of attention toward research and development of ambient assisted living (AAL) systems. These systems should be inexpensive to be installed in elderly homes, protecting their privacy and more importantly being non-invasive and smart. In this paper, we introduce an inexpensive system that utilises off-the-shelf sensor to grab RGB-D data. This data is then fed into different learning algorithms for classification different activity types. We achieve a very good success rate (99.9%) for human activity recognition (HAR) with the help of light-weighted and fast random forests (RF).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    5
    Citations
    NaN
    KQI
    []