Echo in a single vibrationally excited molecule

2020 
Echoes occur in many physical systems, typically in inhomogeneously broadened ensembles of nonlinear objects. They are often used to eliminate the effects of dephasing caused by interactions with the environment as well as to enable the observation of proper, inherent object properties. Here, we report the experimental observation of quantum wave-packet echoes in a single, isolated molecule. The entire dephasing–rephasing cycle occurs without any inhomogeneous spread of molecular properties, or any interaction with the environment, and offers a way to probe the internal coherent dynamics of single molecules. In our experiments, we impulsively excite a vibrational wave packet in an anharmonic molecular potential and observe its oscillations and eventual dispersion with time. A second, delayed pulse gives rise to an echo—a partial recovery of the initial coherent oscillations. The vibrational dynamics of single molecules is visualized by a time-delayed probe pulse dissociating them, one at a time. Two mechanisms for the echo formation are discussed: a.c. Stark-induced molecular potential shaking and creation of a depletion-induced ‘hole’ in the nuclear spatial distribution. The single-molecule wave-packet echoes may lead to the development of new tools for probing ultrafast intramolecular processes in various molecules. Following an impulsive laser excitation of a single molecule, a dispersed vibrational wave-packet is partially rephased by a second pulse, and a wave-packet echo is observed. This wave-packet echo probes ultrafast intramolecular processes in the isolated molecule.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    11
    Citations
    NaN
    KQI
    []