Internally generated population activity in cortical networks hinders information transmission

2020 
How neuronal variability impacts neuronal codes is a central question in systems neuroscience, often with complex and model dependent answers. Most population models are parametric, with a tacitly assumed structure of neuronal tuning and population-wide variability. While these models provide key insights, they purposely divorce any mechanistic relationship between trial average and trial variable neuronal activity. By contrast, circuit based models produce activity with response statistics that are reflection of the underlying circuit structure, and thus any relations between trial averaged and trial variable activity are emergent rather than assumed. In this work, we study information transfer in networks of spatially ordered spiking neuron models with strong excitatory and inhibitory interactions, capable of producing rich population-wide neuronal variability. Motivated by work in the visual system we embed a columnar stimulus orientation map in the network and measure the population estimation of an orientated input. We show that the spatial structure of feedforward and recurrent connectivity are critical determinants for population code performance. In particular, when network wiring supports stable firing rate activity then with a sufficiently large number of decoded neurons all available stimulus information is transmitted. However, if the inhibitory projections place network activity in a pattern forming regime then the population-wide dynamics compromise information flow. In total, network connectivity determines both the stimulus tuning as well as internally generated population-wide fluctuations and thereby dictates population code performance in complicated ways where modeling efforts provide essential understanding.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    104
    References
    5
    Citations
    NaN
    KQI
    []