Chemical Stability and Antimicrobial Activity of Plasma-Sprayed Cerium Oxide–Incorporated Calcium Silicate Coating in Dental Implants

2019 
PURPOSE: The aim of this study is to investigate the biological activity and antibacterial property of cerium oxide-incorporated calcium silicate coatings (CeO2-CS) in dental implants. MATERIALS AND METHODS: In this study, MC3T3-E1 cells cultured on the plastic, Ti-6Al-4V, and the cerium oxide-incorporated calcium silicate coatings (CeO2-CS) coating served as the blank, control, and CeO2-CS groups, respectively. A cell counting kit-8 (CCK-8) and flow cytometry were used to evaluate the biocompatibility. The osteoblastic differentiation of the MC3T3-E1 cells was also analyzed by quantitative real-time polymerase chain reaction analysis. The CCK-8 and counts of colony-forming units (CFUs) were used to detect the antibacterial activity of the coating on Enterococcus faecalis. The study showed that the cerium oxide-incorporated calcium silicate coating (CeO2-CS) has better biocompatibility. Meanwhile, the ALP, OCN, and BSP mRNA expression levels in the CeO2-CS group were significantly upregulated (P < 0.05). The number of viable bacteria and the CFU results were significantly reduced in the CeO2-CS group (P < 0.05). CONCLUSION: The cerium oxide-incorporated calcium silicate coatings (CeO2-CS) may promote the osteoblastic differentiation of osteoblasts. Meanwhile, the cerium oxide-incorporated calcium silicate coating (CeO2-CS) showed strong antimicrobial activity on E. faecalis, with good biocompatibility.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    4
    Citations
    NaN
    KQI
    []