Tree water uptake enhances nitrogen acquisition in a fertilized boreal forest - but not under nitrogen-poor conditions.

2021 
Understanding how plant water uptake interacts with acquisition of soil nitrogen (N) and other nutrients is fundamental for predicting plant responses to a changing environment, but it is an area where models disagree. We present a novel isotopic labelling approach which reveals spatial patterns of water and N uptake, and their interaction, by trees. The stable isotopes 15 N and 2 H were applied to a small area of the forest floor in stands with high and low soil N availability. Uptake by surrounding trees was measured. The sensitivity of N acquisition to water uptake was quantified by statistical modelling. Trees in the high-N stand acquired twice as much 15 N as in the low-N stand and around half of their N uptake was dependent on water uptake (2 H enrichment). In contrast, in the low-N stand there was no positive effect of water uptake on N uptake. We conclude that tree N acquisition was only marginally dependent on water flux toward the root surface under low N conditions but under high-N conditions, the water-associated N uptake was substantial. The results suggest a fundamental shift in N acquisition strategy under high-N conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []