Generation of iPSC lines with high cytogenetic stability from peripheral blood mononuclear cells (PBMCs)

2021 
The utility of human induced pluripotent stem cells (hiPSCs) is contingent upon genomic integrity and stability. Recurrent genomic aberrations have been observed in human iPSC lines upon long-term culture, [~]10-25% demonstrate karyotype abnormalities. We describe a new and reliable non-integrating episomal plasmid reprogramming method for fresh (unexpanded) peripheral blood mononuclear cells (PBMC) into iPSCs (PBMC-iPSCs). PBMC-iPSCs produced using this method have a superior chromosome-level karyotype stability rate ([~]5% abnormality rate for all chromosomes; 2.8% for autosomes). After extended culture PBMC-iPSCs maintain a low rate of abnormalities (2% for autosomes). Deep coverage whole genome sequencing in a subset of PBMC-iPSC lines showed no shared single nucleotide polymorphisms (SNPs) or structural variants are introduced during reprogramming and maintenance of PBMC-iPSCs. iPSCs reprogrammed from unexpanded PBMCs have consistently high cytogenetic stability and minimal genomic aberrations, suggesting this method is highly suited for iPSCs in research and therapeutic clinical applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    95
    References
    0
    Citations
    NaN
    KQI
    []