Targeting Fluorescent Sensors to Endoplasmic Reticulum Membranes Enables Detection of Peroxynitrite During Cellular Phagocytosis

2018 
Peroxynitrite is a highly reactive oxidant derived from superoxide and nitric oxide. In normal vertebrate physiology, some phagocytes deploy this oxidant as a cytotoxin against foreign pathogens. To provide a new approach for detection of endogenous cellular peroxynitrite, we synthesized fluorescent sensors targeted to membranes of the endoplasmic reticulum (ER). The very high surface area of these membranes, approximately 30 times greater than the cellular plasma membrane, was envisioned as a vast intracellular platform for the display of sensors to transient reactive species. By linking an ER-targeted profluorophore to reactive phenols, sensors were designed to be cleaved by peroxynitrite and release a highly fluorescent ER-associated rhodol. Studies of kinetics in aqueous buffer revealed a linear free energy relationship where electron-donating substituents accelerate this reaction. However, in living cells, the efficiency of detection of endogenous cellular peroxynitrite was directly proportional to a...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    19
    Citations
    NaN
    KQI
    []