Identification of a microRNA signature in endothelial cells with mechanical stretch stimulation.

2015 
Abstract The current study aimed to verify an miRNA signature in endothelial cells undergoing mechanical stretch stimulation. In the present study, microarray profiling was conducted in order to identify the differential expression of miRNAs in endothelial cells undergoing mechanical stimulation, compared with unstimulated endothelial cells. The microarray data was then validated by reverse transcription‑quantitative polymerase chain reaction. Genes and signaling pathways regulated by the miRNAs were investigated in silico using Gene Ontology and the Kyoto Encyclopedia of Genes or Genomes, which are ontological and network‑mapping algorithms. The microarray data collected demonstrated that 38 miRNAs exhibited significant differential expression in endothelial cells with mechanical stretch stimulation. Of these, 20 were upregulated and 18 were downregulated. The results from the in silico analysis indicated that the miRNAs identified were participants in mechanical stretch‑induced endothelial dysfunction. During the initial stage of vein graft failure, which is induced by endothelial dysfunction, a unique miRNA signature was identified. The identified miRNAs are suggested to be involved in the pathological processes of traumatic injury.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    5
    Citations
    NaN
    KQI
    []