Will drought events become more frequent and severe in Europe

2018 
As a result of climate change in recent past and unsustainable land management, drought became one of the most impacting disasters and, with the projected global warming, it is expected to progressively cause more damages by the end of the 21st century. This study investigates changes in drought occurrence, frequency, and severity in Europe in the next decades. A combined indicator based on the predominance of the drought signal over normal/wet conditions has been used. The indicator, which combines the standardized precipitation index (SPI, which accounts for anomalous low rainfall), the standardized precipitation evapotranspiration index (SPEI, which accounts for high temperatures and scarce precipitations), and the reconnaissance drought indicator (RDI, similar to SPEI but more affected by extreme events), has been computed at 3- and 12-month accumulation scales to characterize trends in seasonal and annual events from 1981 to 2100. Climate data from 11 bias-adjusted high-resolution (0.11°) simulations from the EURO-CORDEX (coordinated regional climate downscaling experiment) have been used in the analyses. For each simulation, the frequency and severity of drought and extreme drought events for 1981–2010, 2041–2070, and 2071–2100 have been analysed. Under the moderate emission scenario (RCP4.5), droughts are projected to become increasingly more frequent and severe in the Mediterranean area, western Europe, and Northern Scandinavia, whereas the whole European continent, with the exception of Iceland, will be affected by more frequent and severe extreme droughts under the most severe emission scenario (RCP8.5), especially after 2070. Seasonally, drought frequency is projected to increase everywhere in Europe for both scenarios in spring and summer, especially over southern Europe, and less intensely in autumn; on the contrary, winter shows a decrease in drought frequency over northern Europe.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    145
    References
    227
    Citations
    NaN
    KQI
    []