Tiny Molecular Beacons: LNA/2'-O-methyl RNA Chimeric Probes for Imaging Dynamic mRNA Processes in Living Cells

2012 
New approaches for imaging dynamic processes involving RNAs in living cells are continuously being developed and optimized. The use of molecular beacons synthesized from 2′-O-methylribonucleotides (which are resistant to cellular nucleases) is an established approach for visualizing native mRNAs in real time. In order to spatially and temporally resolve dynamic steps involving RNA in cells, molecular beacons need to efficiently hybridize to their RNA targets. To expand the repertoire of target sites accessible to molecular beacons, we decreased the length of their probe sequences and altered their backbone by the inclusion of LNA (locked nucleic acid) nucleotides. We named these new LNA/2′-O-methyl RNA chimera oligonucleotides “tiny molecular beacons”. We analyzed these tiny molecular beacons and found that the incorporation of just a few LNA nucleotides enables these shorter probes to stably anneal to more structured regions of the RNA than is possible with conventional molecular beacons. The ease of syn...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    48
    Citations
    NaN
    KQI
    []