Re-Os isotopic and trace element compositions of pyrite and origin of the Cretaceous Jinchang porphyry Cu-Au deposit, Heilongjiang Province, NE China

2016 
Abstract The Jinchang Cu-Au deposit in Northeast China contains more than 76 tons of Au and 4683 tons of Cu with average ore grades of 11.34 g/t Au and 1.44% Cu. The deposit is typical of porphyry types and consists of gold orebodies mainly hosted in a ∼113 Ma granitic porphyry and breccia pipes within the porphyry intrusion. Mineralization is closely associated with early potassic alteration and late phyllic alteration. Pyrite is the main Au-bearing mineral and contains 1.48–18.9 ppb Re and 11.4–38 ppt common Os. Extremely low common Os concentrations and high Re/Os ratios are indicative of derivation of ore-forming materials from the crust. Low Re in pyrite from the Jinchang deposit may indicate a mixing source of mantle and crust or a crustal source. Five Re-Os isotopic analyses yield a model 1 isochron age of 114 ± 22 Ma (2σ, MSWD = 0.15), similar to the age of the host porphyry. Pyrite contains detectable Co, Ni, Cu, Zn, As, Ag, Au, Sb, Pb and Bi. Pyrite has Co/Ni ratios similar to that of volcanogenic and hydrothermal sulfide deposits, indicating a magmatic-hydrothermal origin, and has Au and As contents similar to that of porphyry-epithermal systems. Pyrite grains from potassic and phyllic alteration stages have different trace element contents, reflecting the evolution of ore-forming fluids from magmatic dominated to magmatic mixed with meteoric water. In combination with regional geology, our new results are suggestive of origin of the Jinchang Cu-Au deposit from contemporary intrusions of granitic porphyries related to the Early Cretaceous subduction of the Paleo-Pacific plate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    109
    References
    25
    Citations
    NaN
    KQI
    []