Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways.

2007 
The roles of chemical compounds in biological systems are now systematically analyzed by high-throughput experimental technologies. To automate the processing and interpretation of large-scale data it is necessary to develop bioinformatics methods to extract information from the chemical structures of these small molecules by considering the interactions and reactions involving proteins and other biological macromolecules. Here we focus on metabolic compounds and present a knowledge-based approach for understanding reactivity and metabolic fate in enzyme-catalyzed reactions in a given organism or group. We first constructed the KEGG RPAIR database containing chemical structure alignments and structure transformation patterns, called RDM patterns, for 7091 reactant pairs (substrate-product pairs) in 5734 known enzyme-catalyzed reactions. A total of 2205 RDM patterns were then categorized based on the KEGG PATHWAY database. The majority of RDM patterns were uniquely or preferentially found in specific class...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    75
    Citations
    NaN
    KQI
    []