New implementation of a SNOM suitable to study topographical features over wide areas

2005 
A new implementation of a SNOM is described, aiming at the topographical study of large areas and exploiting the advantages of the shear-force detection system. This technique finds very interesting application in the study of archeological or artistic samples, where it often occurs that an area to be examined at high resolution (optically, topographically or chemically) is enclosed in a wider one. The implemented system allows to obtain scans of wide areas by using dc-motors to move the sample under the probe tip, and thus it can face rough samples with height differences of several tens of micrometers. It allows the user to choose whether to use the SNOM to study the optical and topographical properties of a small part of the sample (up to tens of square micrometers), or to use the motor-driven scan technique, to study the topographical characteristic of a large area of the sample (up to some square millimeters) and even over rough surfaces. We show results detecting worn relieves over a coin. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []