Super-resolution imaging reveals the evolution of higher-order chromatin folding in early carcinogenesis

2019 
Aberrant chromatin structure is a hallmark in cancer cells and has long been used for clinical diagnosis of cancer. However, underlying higher-order chromatin folding during malignant transformation remains elusive, due to the lack of molecular scale resolution. Using optimized stochastic optical reconstruction microscopy (STORM) for pathological tissue (PathSTORM), we uncovered a gradual decompaction and fragmented higher-order chromatin folding throughout all stages of carcinogenesis in multiple tumor types, even prior to the tumor formation. Our integrated imaging, genomic, and transcriptomic analyses reveal the functional consequences in enhanced formation of transcription factories, spatial juxtaposition with relaxed nanosized chromatin domains and impaired genomic stability. We also demonstrate the potential of imaging higher-order chromatin decompaction to detect high-risk precursors that cannot be distinguished by conventional pathology. Taken together, our findings reveal the gradual decompaction and fragmentation of higher-order chromatin structure as an enabling characteristic in early carcinogenesis to facilitate malignant transformation, which may improve cancer diagnosis, risk stratification, and prevention.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    1
    Citations
    NaN
    KQI
    []