Sensitive endpoints for evaluating cadmium-induced acute toxicity in LLC-PK1 cells
2003
Abstract Cadmium chloride (CdCl 2 ) is a nephrotoxicant that causes damage to the proximal tubular epithelium. In vivo, it increases the permeability of epithelial surfaces, while in vitro, it acts on active trans-epithelial ion transport. The purpose of this study was to investigate CdCl 2 effects on a porcine renal proximal tubular epithelial cell line (LLC-PK1), and, in particular, to identify sensitive endpoints revealing damage both at the epithelial barrier level and at the molecular level. After exposure of the cells to CdCl 2 , trans-epithelial resistance (TER) decreased while paracellular permeability (PCP) increased, indicating a structural alteration of the junctional complex. At the molecular level, we observed an increase in protective proteins, such as metallothioneins (MTs) and heat shock proteins (HSP70), starting from 25 μM CdCl 2 , together with alterations in cytoskeleton organization. Production of reactive oxygen species (ROS) was also evident, indicating cellular oxidative stress. Our data indicate that CdCl 2 toxicity can be detected at the barrier level and at the molecular level at low concentrations, at which cytotoxicity assays are unable to show any damage. Therefore, these endpoints should prove very useful in studying heavy metal-induced acute toxicity. Exposure of the cells to higher concentrations of CdCl 2 (50 μM) revealed the initiation of apoptosis, mediated by caspase-3.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
24
References
82
Citations
NaN
KQI