Parametric Optimization of Abrasive Water jet Machining Process on Inconel 600 Using Two Different Abrasive Grain Sizes

2019 
Abrasive water jet machining is one of the widely used unconventional machining processes to machine complicated shapes for difficult-to-machine materials like titanium alloy, Inconel, alloy steel, tool steel, marble. Inconel 600 is used as a material for machining considering its applications for engine seal of the rocket engine, marine, aerospace industries. In this present work, the predominant process parameters like pressure, abrasive flow rate, transverse speed, and stand-off distance which are varied to obtain optimum values of response parameters like material removal rate and surface finish. Since the multi-response optimization cannot be performed by conventional Taguchi method, it has performed with Grey–Taguchi methodology. Pressure and stand-off distance are the most influence process parameters to obtain the higher MRR and better surface finish. Finally, the results indicate that the abrasive grain size of 100 mesh for machining Inconel 600 has produced higher MRR and better surface finish than the abrasive grain size of 80 mesh. The optimized results attained from this grey relational approach indicate that higher MRR and lower surface roughness were achieved with the process parameters’ combinations such as pressure of 275 Mpa, mass flow rate of 0.24 kg/min, transverse speed of 150 mm/min, and stand-off distance of 3 mm. The experimental results show that the multi-response performance of the Inconel 600 used in the electrochemical micro-machining process has been enhanced through the grey relational approach.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    3
    Citations
    NaN
    KQI
    []