Coupling (reduced) Graphene Oxide to Mammalian Primary Cortical Neurons In Vitro

2015 
Neuronal nanoscale interfacing aims at identifying or designing nanostructured smart materials and validating their applications as novel biocompatible scaffolds with active properties for neuronal networks formation, nerve regeneration, and bidirectional biosignal coupling. Among several carbon-based nanomaterials, Graphene recently attracted great interest for biological applications, given its unique mechanical, optical, electronic properties, and its recent technological applications. Here we explore the use of Graphene Oxide (GO) and reduced Graphene Oxide (rGO) as biocompatible culture substrates for primary neuronal networks developing ex vivo . We quantitatively studied cytotoxicity and cellular viability as well as single-cell and network-level electrophysiological properties of neurons in vitro . Our results confirm previous reports, employing immortalized cell lines or pluripotent stem cells, and extend them to mammalian primary cortical neurons: GO and rGO are biocompatible substrates and do not alter neuronal excitable properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    2
    Citations
    NaN
    KQI
    []