Overcoming sparseness of biomedical networks to identify drug repositioning candidates

2021 
Modeling complex biological systems is necessary to understand biochemical interactions behind pharmacological effects of drugs. Successful in silico drug repurposing relies on exploration of diverse biochemical concepts and their relationships, including drug's adverse reactions, drug targets, disease symptoms, as well as disease associated genes and their pathways, to name a few. We present a computational method for inferring drug-disease associations from complex but incomplete and biased biological networks. Our method employs matrix completion to overcome the sparseness of biomedical data and to enrich the set of relationships between different biomedical entities. We present a strategy for identifying network paths supportive of drug efficacy as well as a computational procedure capable of combining different network patterns to better distinguish treatments from non-treatments. The algorithms is available at http://bioinfo.cs.uni.edu/AEONET.html.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []