A multidisciplinary combinatorial approach for tuning promising hydrogen storage materials towards automotive applications

2011 
HyStorM is a multidisciplinary hydrogen-storage project aiming to synthesise and tune materials hydrogen storage properties for automotive applications. Firstly, unique high-throughput combinatorial thin-film technologies are used to screen materials' hydrogen storage properties. Then promising thin-film candidate compositions are synthesised and examined in the bulk. In this paper, we report on our results within the ternary compositions Mg–Ti–B and Ca–Ti–B. Primary screening of the Mg–Ti–B ternary identified a high capacity hotspot corresponding to Mg0.36Ti0.06B0.58, with 10.6 wt% H2 capacity. Partial reversibility has been observed for this material in the thin-film. Bulk Ti-doped Mg(BH4)2 composites show rehydrogenation to MgH2 under the conditions used. The synthesised thin-film Ca–Ti–B ternary showed only low hydrogen storage capacities. In the bulk, Ti-doping experiments on Ca(BH4)2 demonstrated reversible storage capacities up to 5.9 wt% H2. Further characterisation experiments are required to decipher the role of the Ti-dopant in these systems in both films and in the bulk.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    10
    Citations
    NaN
    KQI
    []