Coupled Carbonization Strategy toward Advanced Hard Carbon for High-Energy Sodium-Ion Battery

2017 
Sodium-ion batteries (SIBs) are expected to be a promising commercial alternative to lithium-ion batteries for grid electricity storage due to their potential low cost in the near future. Up to the present, the anode material still remains a great challenge for the application of SIBs, especially at room temperature. Graphite has an obvious limitation to store larger radius sodium ions (Na+) in comparison with lithium ions (Li+), while the hard carbon with large interlayer distance can demonstrate a relatively high storage capability and durable cycle life. However, the disadvantages of low initial Coulombic efficiency (ICE) mainly caused by large surface area and high cost synthetic approach hinder its practical applications. Herein, a new coupled carbonization strategy is presented to prepare a cost-effective hard carbon material by pyrolyzing and carbonizing the mixture of abundant sucrose and phenolic resin. Benefiting from the specialized pyrolysis reaction process and optimized conditions as studied...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    55
    Citations
    NaN
    KQI
    []