One-Pot Synthesized Bicontinuous Hierarchical Li3V2(PO4)3/C Mesoporous Nanowires for High-Rate and Ultralong-Life Lithium-ion Batteries
2014
Lithium-ion batteries have attracted enormous attention for large-scale and sustainable energy storage applications. Here we present a design of hierarchical Li3V2(PO4)3/C mesoporous nanowires via one-pot synthesis process. The mesoporous structure is directly in situ carbonized from the surfactants (CTAB and oxalic acid) along with the crystallization of Li3V2(PO4)3 without using any hard templates. As a cathode for lithium-ion battery, the Li3V2(PO4)3/C mesoporous nanowires exhibit outstanding high-rate and ultralong-life performance with capacity retention of 80.0% after 3000 cycles at 5 C in 3–4.3 V. Even at 10 C, it still delivers 88.0% of its theoretical capacity. The ability to provide this level of performance is attributed to the hierarchical mesoporous nanowires with bicontinuous electron/ion pathways, large electrode–electrolyte contact area, low charge transfer resistance, and robust structure stability upon prolonged cycling. Our work demonstrates that the unique mesoporous nanowires structur...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
55
References
213
Citations
NaN
KQI