Loss of MYO5B Leads to Reductions in Na+ Absorption with Maintenance of CFTR-dependent Cl- Secretion in Enterocytes
2018
Background & Aims Inactivating mutations in MYO5B cause microvillus inclusion disease (MVID), but the physiological cause of the diarrhea associated with this disease is unclear. We investigated whether loss of MYO5B results in aberrant expression of apical enterocyte transporters. Methods We studied alterations in apical membrane transporters in MYO5B-knockout mice, as well as mice with tamoxifen-inducible, intestine-specific disruption of Myo5b ( VilCre ERT2 ; Myo5b flox/flox mice) or those not given tamoxifen (controls). Intestinal tissues were collected from mice and analyzed by immunostaining, immunoelectron microscopy, or cultured enteroids were derived. Functions of brush border transporters in intestinal mucosa were measured in Ussing chambers. We obtained duodenal biopsy specimens from individuals with MVID and individuals without MVID (controls) and compared transporter distribution by immunocytochemistry. Results Compared to intestinal tissues from littermate controls, intestinal tissues from MYO5B-knockout mice had decreased apical localization of SLC9A3 (also called NHE3), SLC5A1 (also called SGLT1), aquaporin (AQP) 7, and sucrase isomaltase, and subapical localization of intestinal alkaline phosphatase and CDC42. However, CFTR was present on apical membranes of enterocytes from MYO5B knockout and control mice. Intestinal biopsies from patients with MVID had subapical localization of NHE3, SGLT1, and AQP7, but maintained apical CFTR. After tamoxifen administration, VilCre ERT2 ; Myo5b flox/flox mice lost apical NHE3, SGLT1, DRA, and AQP7, similar to germline MYO5B knockout mice. Intestinal tissues from VilCre ERT2 ; Myo5b flox/flox mice had increased CFTR in crypts and CFTR localized to the apical membranes of enterocytes. Intestinal mucosa from VilCre ERT2 ; Myo5b flox/flox mice given tamoxifen did not have an intestinal barrier defect, based on Ussing chamber analysis, but did have decreased SGLT1 activity and increased CFTR activity. Conclusions Although trafficking of many apical transporters is regulated by MYO5B, trafficking of CFTR is largely independent of MYO5B. Decreased apical localization of NHE3, SGLT1, DRA, and AQP7 might be responsible for dysfunctional water absorption in enterocytes of patients with MVID. Maintenance of apical CFTR might exacerbate water loss by active secretion of chloride into the intestinal lumen.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
40
References
25
Citations
NaN
KQI