Ultrafast Relaxation Dynamics of Photoexcited Zinc-Porphyrin: Electronic-Vibrational Coupling

2016 
Cyclic tetrapyrroles are the active core of compounds with crucial roles in living systems, such as hemoglobin and chlorophyll, and in technology as photocatalysts and light absorbers for solar energy conversion. Zinc-tetraphenylporphyrin (Zn-TPP) is a prototypical cyclic tetrapyrrole that has been intensely studied in past decades. Because of its importance for photochemical processes the optical properties are of particular interest, and, accordingly, numerous studies have focused on light absorption and excited-state dynamics of Zn-TPP. Relaxation after photoexcitation in the Soret band involves internal conversion that is preceded by an ultrafast process. This relaxation process has been observed by several groups. Hitherto, it has not been established if it involves a higher lying ”darkstate or vibrational relaxation in the excited S2 state. Here we combine high time resolution electronic and vibrational spectroscopy to show that this process constitutes vibrational relaxation in the anharmonic S2 ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    19
    Citations
    NaN
    KQI
    []