High-dimensional data analysis with subspace comparison using matrix visualization:

2019 
Due to the intricate relationship between different dimensions of high-dimensional data, subspace analysis is often conducted to decompose dimensions and give prominence to certain subsets of dimensions, i.e. subspaces. Exploring and comparing subspaces are important to reveal the underlying features of subspaces, as well as to portray the characteristics of individual dimensions. To date, most of the existing high-dimensional data exploration and analysis approaches rely on dimensionality reduction algorithms (e.g. principal component analysis and multi-dimensional scaling) to project high-dimensional data, or their subspaces, to two-dimensional space and employ scatterplots for visualization. However, the dimensionality reduction algorithms are sometimes difficult to fine-tune and scatterplots are not effective for comparative visualization, making subspace comparison hard to perform. In this article, we aggregate high-dimensional data or their subspaces by computing pair-wise distances between all data...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    4
    Citations
    NaN
    KQI
    []