Lewis Base-Mediated Perovskite Crystallization as Revealed by In Situ, Real-Time Optical Absorption Spectroscopy.

2021 
The strategy of Lewis base modification has been shown to be rather effective in fabricating high-quality perovskite crystals; however, the underlying mechanisms remain controversial owing to the lack of any systematic characterization of the crystallization process. Herein, we report a novel non-invasive optical technique, termed vertical reflection-type in situ, real-time absorption spectroscopy, to investigate the mechanisms of Lewis base-mediated optimization of perovskite crystallinity by visualizing the entire energetic landscape of crystal growth. We show that by virtue of the urea additive, a prototypical Lewis base, the growth kinetics is accelerated prominently by decreasing the activation energy from 73.7 to 41.7 kJ/mol. In addition, the self-passivation of structural disorder during thermal annealing is identified, which is shown to be further strengthened by urea modification toward a shallower distribution of trap states.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []