The role of microbial diversity in the formation of soil organic matter quality and persistence

2021 
The largest terrestrial carbon sink on earth is soil carbon stocks. As the climate changes, the rate at which the Earths climate warms depends in part on the persistence of soil organic carbon. Microbial turnover forms the backbone of soil organic matter (SOM) formation and it has been recently proposed that SOM molecular complexity is a key driver of stability. Despite this, the links between microbial diversity, chemical complexity and biogeochemical nature of soil organic matter remain missing. Here we used a model soil system to test the hypothesis that more diverse microbial communities generate more stable soil organic matter. We inoculated microbial communities of varying diversities into an model soil matrix amended with simple carbon, and measured the thermal stability of the resultant soil organic matter. Using a novel data analysis approach with Rock-Eval(R) ramped thermal analysis, we found that microbial community diversity drives the chemical fingerprint of soil organic matter. Bacteria-only and low diversity communities lead to less chemically-diverse and more thermally-labile soil carbon pools than highly diverse communities. Our results provide direct evidence for a link between microbial diversity, molecular complexity and SOM stability. This evidence demonstrates the benefits of managing soils for maximum biological diversity as a means of building persistent SOM stocks. ClassificationBiological Sciences: Ecology
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    0
    Citations
    NaN
    KQI
    []