Nanostructured hydrogen storage materials prepared by high-energy reactive ball milling of magnesium and ferrovanadium

2019 
Abstract Hydrogen storage nanocomposites prepared by high energy reactive ball milling of magnesium and vanadium alloys in hydrogen (HRBM) are characterised by exceptionally fast hydrogenation rates and a significantly decreased hydride decomposition temperature. Replacement of vanadium in these materials with vanadium-rich Ferrovanadium (FeV, V80Fe20) is very cost efficient and is suggested as a durable way towards large scale applications of Mg-based hydrogen storage materials. The current work presents the results of the experimental study of Mg–(FeV) hydrogen storage nanocomposites prepared by HRBM of Mg powder and FeV (0–50 mol.%). The additives of FeV were shown to improve hydrogen sorption performance of Mg including facilitation of the hydrogenation during the HRBM and improvements of the dehydrogenation/re-hydrogenation kinetics. The improvements resemble the behaviour of pure vanadium metal, and the Mg–(FeV) nanocomposites exhibited a good stability of the hydrogen sorption performance during hydrogen absorption – desorption cycling at T  = 350 °C caused by a stability of the cycling performance of the nanostructured FeV acting as a catalyst. Further improvement of the cycle stability including the increase of the reversible hydrogen storage capacity and acceleration of H 2 absorption kinetics during the cycling was observed for the composites containing carbon additives (activated carbon, graphite or multi-walled carbon nanotubes; 5 wt%), with the best performance achieved for activated carbon.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    24
    Citations
    NaN
    KQI
    []