Bone marrow-derived cells are the major source of MMP-9 contributing to blood-brain barrier dysfunction and infarct formation after ischemic stroke in mice.

2009 
Matrix metalloproteinase (MMP)-9 has been shown to contribute to blood-brain barrier (BBB) disruption, infarct formation, and hemorrhagic transformation after ischemic stroke. The cellular source of MMP-9 detectable in the ischemic brain remains controversial since extracellular molecules in the brain may be derived from blood. We here demonstrate that bone marrow-derived cells are the major source of MMP-9 in the ischemic brain. We made bone marrow chimeric mice with MMP-9 null and wild-type as donor and recipient. After 90 min of transient focal cerebral ischemia, MMP-9 null mice receiving wild-type bone marrow showed comparable outcomes to wild-type in brain MMP-9 levels and BBB disruption (endogenous albumin extravasation) at 1 h post-reperfusion and infarct size at 24 h post-reperfusion. In contrast, wild-type animals replaced with MMP-9 null bone marrow showed barely detectable levels of MMP-9 in the ischemic brain, with attenuations in BBB disruption and infarct size. MMP-9 null mice receiving wild-type bone marrow showed enhanced Evans blue extravasation as early as 1 h post-reperfusion compared to wild-type mice replaced with MMP-9 null bone marrow. These findings suggest that MMP-9 released from bone marrow-derived cells influences the progression of BBB disruption in the ischemic brain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    57
    Citations
    NaN
    KQI
    []