Unusual Indirect Nuclear Spin–Spin Exchange Coupling through Solvated Electron

2018 
Solvated electrons have been found to exist in various media which also exhibit more intriguing properties such as superconductivity, nonlinear optical response, and so on. However, how they affect the nuclear spin properties has not been proven. In this work, we present the first detailed study on solvated-electron-triggered indirect nuclear spin–spin J-coupling using density functional theory calculations. Taking 19F as a probe, we verify the presence of unusual J couplings between two distant F atoms in HF-containing anionic clusters. These couplings occur “through solvated electron”, rather than through conventional covalent bonds or space. Solvated electron can serve as an additional channel to efficiently realize long-range J-coupling between far separated nuclei because of its dispersivity and Rydberg character. The coupling magnitude strongly depends on the unique distribution of solvated electron and its second-order interaction with solvating HF units. This work provides novel insights into the ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    5
    Citations
    NaN
    KQI
    []