Nonlocal Polyakov-Nambu-Jona-Lasinio model and imaginary chemical potential

2011 
With the aim of setting constraints for the modeling of the QCD phase diagram, the phase structure of the two-flavor Polyakov-loop-extended Nambu and Jona-Lasinio (PNJL) model is investigated in the range of imaginary chemical potentials ({mu}{sub I}) and compared with available N{sub f} = 2 lattice QCD results. The calculations are performed using the advanced nonlocal version of the PNJL model with the inclusion of vector-type quasiparticle interactions between quarks, and with wave-function-renormalization corrections. It is demonstrated that the nonlocal PNJL model reproduces important features of QCD at finite {mu}{sub I}, such as the Roberge-Weiss (RW) periodicity and the RW transition. Chiral and deconfinement transition temperatures for N{sub f} = 2 turn out to coincide both at zero chemical potential and at finite {mu}{sub I}. Detailed studies are performed concerning the RW endpoint and its neighborhood where a first-order transition occurs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    41
    Citations
    NaN
    KQI
    []