Production of enzymatic hydrolysates with antioxidant and angiotensin-I converting enzyme inhibitory activity from pumpkin oil cake protein isolate

2011 
Abstract Protein isolate from pumpkin oil cake (PuOC PI) was hydrolysed by alcalase, flavourzyme and by sequential use of these enzymes, respectively, and the antioxidant properties and angiotensin-I converting enzyme (ACE) inhibitory activities of hydrolysates were evaluated. Under the same reaction conditions, alcalase hydrolysates showed a higher degree of hydrolysis (DH) than did flavourzyme hydrolysates. The highest DH’s by individual enzymes were 53.23 ± 0.7% and 37.17 ± 1.05%, respectively, both at 60 min. The increase of radical scavenging activity (RSA) in hydrolysates was positively correlated with the increase of DH, for both enzymes, though hydrolysates with flavourzyme showed two- or three-fold lower RSA than with alcalase. The highest bioactive potential was determined in the alcalase hydrolysate at 60 min, with RSA being 7.59 ± 0.081 mM TEAC/mg and ACE-inhibitory activity 71.05 ± 7.5% (IC 50  = 0.422 mg/ml). When this hydrolysate was further hydrolysed by flavourzyme, DH increased up to 69.29 ± 0.9%, but lower RSA (4.82 ± 0.21 mM TEAC/mg) and ACE-inhibitory activity (55.81 ± 6.196%) were determined in the final hydrolysate. This study suggested that the PuOC proteins could be converted into protein hydrolysates with antioxidant and ACE-inhibitory activities by enzymatic hydrolysis. Alcalase was shown as promising enzyme in further development of bioprocesses for the production of new bioactive food ingredients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    64
    Citations
    NaN
    KQI
    []