On the symmetry of the quadratic assignment problem through elementary landscape decomposition

2021 
When designing meta-heuristic strategies to optimize the quadratic assignment problem (QAP), it is important to take into account the specific characteristics of the instance to be solved. One of the characteristics that has been pointed out as having the potential to affect the performance of optimization algorithms is the symmetry of the distance and flow matrices that form the QAP. In this paper, we further investigate the impact of the symmetry of the QAP on the performance of meta-heuristic algorithms, focusing on local search based methods. The analysis is carried out using the elementary landscape decomposition (ELD) of the problem under the swap neighborhood. First, we study the number of local optima and the relative contribution of the elementary components on a benchmark composed of different types of instances. Secondly, we propose a specific local search algorithm based on the ELD in order to experimentally validate the effects of the symmetry. The analysis carried out shows that the symmetry of the QAP is a relevant feature that influences both the characteristics of the elementary components and the performance of local search based algorithms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []