Genomic Surveillance of Yellow Fever Virus Epizootic in São Paulo, Brazil, 2016 – 2018

2020 
Sao Paulo (SP), a densely inhabited state in southeast Brazil that contains the fourth most populated city in the world, recently experienced its largest yellow fever virus (YFV) outbreak in decades. YFV does not normally circulate extensively in SP, so most people were unvaccinated when the outbreak began. Surveillance in non-human primates (NHPs) is important for determining the magnitude and geographic extent of an epizootic, thereby helping to evaluate the risk of YFV spillover to humans. Data from infected NHPs can give more accurate insights into YFV spread than when using data from human cases alone. To contextualise human cases, identify epizootic foci and uncover the rate and direction of YFV spread in SP, we generated and analysed virus genomic data and epizootic case data from NHP in SP. We report the occurrence of three spatiotemporally distinct phases of the outbreak in SP prior to February 2018. We generated 51 new virus genomes from YFV positive cases identified in 23 different municipalities in SP, mostly sampled from non-human primates between October 2016 and January 2018. Although we observe substantial heterogeneity in lineage dispersal velocities between phylogenetic branches, continuous phylogeographic analyses of generated YFV genomes suggest that YFV lineages spread in SP state at a mean rate of approximately 1km per day during all phases of the outbreak. Viral lineages from the first epizootic phase in northern SP subsequently dispersed towards the south of the state to cause the second and third epizootic phases there. This alters our understanding of how YFV was introduced into the densely populated south of SP state. Our results shed light on the sylvatic transmission of yellow fever in highly fragmented forested regions in SP state and highlight the importance of continued surveillance of zoonotic pathogens in sentinel species.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    5
    Citations
    NaN
    KQI
    []