Daily gridded temperature and precipitation datasets over the Black Sea catchment: 1961–1990 and climate change scenarios for 2071–2100

2020 
This dataset improves on previous products in its spatial resolution, spatial extent and time period covering the Black Sea catchment (BSC). The spatial prediction of daily datasets was performed using the integrated nested Laplace approximation (INLA) methodology. The results show that for minimum and maximum temperature, the model with the elevation and distance to shorelines predictors is the best fitted model. The best fitted model for precipitation is obtained with the elevation predictor. The downscaling of climate change scenarios is based on HIRHAM regional climate model (RCM) from the European project PRUDENCE. The downscaling was made by means of a modified delta method. The modified delta method applied in this study explicitly considers the spatial differences of the climate scenarios and the monthly variability. For each grid point, the delta method is applied according to the rank order of values in the monthly distribution of the closest RCM grid point. The results show that the delta method gives satisfying results when considering the monthly variability. Impacts on minimum temperature, maximum temperature, precipitation, number of days without precipitation, dry spell length, number and length of days above maximum temperature above 30∘C, under conditions of climate change are also examined for this region.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    89
    References
    0
    Citations
    NaN
    KQI
    []